GAYTON PRIMARY SCHOOL

Calculations Policy

Gayton Primary School
 Calculation Policy

This mathematics policy is a guide for all staff at Gayton Primary school and has been adapted from work by the NCETM. It is purposely set out as a progression of mathematical skills and not into year group phases to encourage a flexible approach to teaching and learning. It is expected that teachers will use their professional judgement as to when consolidation of existing skills is required or if to move onto the next concept. However, the focus must always remain on breadth and depth rather than accelerating through concepts. Children should not be extended with new learning before they are ready, they should deepen their conceptual understanding by tackling challenging and varied problems. All teachers have been given the scheme of work from the White Rose Maths Hub and are required to base their planning around their year group's modules and not to move onto a higher year groups scheme work.

Teachers can use different teaching resources that they wish to use and the policy does not recommend one set of resources over another, rather that, a variety of resources are used. For each of the four rules of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The principle of the concrete-pictorial-abstract (CPA) approach [Make it, Draw it, Write it] is for children to have a true understanding of a mathematical concept, they need to master all three phases within a year group's scheme of work.

Mathematics Mastery

At the centre of the mastery approach to the teaching of mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used in Year 1 to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

Mathematical Language

The 2014 National Curriculum is explicit in articulating the importance of children using the correct mathematical language as a central part of their learning (reasoning). It is therefore essential that teaching using the strategies outlined in this policy is accompanied by the use of appropriate and precise mathematical vocabulary. New vocabulary should be introduced in a suitable context (for example, with relevant real objects, apparatus, pictures or diagrams) and explained carefully.

The quality and variety of language that pupils hear and peak are key factors in developing their mathematica vocabulary and presenting a mathematical justification, argument or proof.

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part-whole model			5 $\mathbf{4 + 3}=\mathbf{7}$Use the part-part whole diagram as shown above to move into the abstract.$\quad 10=\mathbf{6 + 4}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10. $\begin{aligned} & 3+9= \\ & 9+5=14 \end{aligned}$ 14 4	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.		$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Column method- no regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +42 \end{array}$
Column method- regrouping	Make both numbers on a place value grid. 146 Add up the units and exchange 10 ones for one 10. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added. This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100. As children move on to decimals, money and decimal place value counters can be used to support learning.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.

Objective and Strategies

Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	5 Move to using numbers within the part whole model.
Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?
Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters to exchange one of my tens for ten ones.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	Children can start their formal written method by partitioning the number into clear place value columns.

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

Moving forward the children use a more compact method.
This will lead to an understanding of subtracting any number including decimals.

Multiplication

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline Doubling \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
double 4 is 8 \\
\(4 \times 2=8\)
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

\square
\end{tabular} \&

\hline Counting in multiples \& Count in multiples supported by concrete objects in equal groups. \& Use a number line or pictures to continue support in counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $\begin{gathered} 2,4,6,8,10 \\ 5,10,15,20,25,30 \end{gathered}$ |

\hline Repeated addition \& Use different objects to add equal groups. \& | There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? |
| :--- |
| 2 add 2 add 2 equals 6 $5+5+5=15$ | \& Write addition sentences to describe objects and pictures.

\hline Arrays- showing commutative multiplication \& Create arrays using counters/ cubes to show multiplication sentences. \& \& Use an array to write multiplication sentences and reinforce repeated addition. (see below)

\hline
\end{tabular}

	$\begin{array}{l\|l\|l} \hline \Theta & 000 & 0 \\ \hline 0 & 00 & 8 \\ \hline 0 & 00 & 0 \\ \hline 0 & 00 & 0 \\ \hline \end{array}$ Then you have your answer.		
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods. $\begin{aligned} & 8 \times 59 \\ &= 8 \times 60-8 \\ & 8 \times 6=48 \\ & 8 \times 60=480 \\ & 480-8=472 \end{aligned}$ 250 m 250 ml , \longrightarrow $\begin{aligned} & 4+4+8+8+16 \\ & 5 \times 8=40 \text { jugs } \end{aligned}$	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. This moves to the more compact method. $\begin{array}{r} 1342 \\ 13 \quad 18 \\ \hline 13420 \\ 10736 \\ \hline 24156 \\ \hline \end{array}$

Objective and Strategies
Division with a remainder

